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A low-energy effective Yang-Mills theory for quark and gluon confinement

Kei-Ichi Kondo1∗
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We derive a gauge-invariant low-energy effective model of the Yang-Mills theory, exhibiting both
quark and gluon confinement: the Wilson loop average has area law and the Schwinger function
violates reflection positivity. The resulting gluon propagator has the Gribov-Stingl type, especially,
the infrared finite case is reproduced when one includes a mass term breaking nilpotency of the BRST
symmetry. However, quark and gluon confinement can be obtained even in the absence of such a
mass term. This model achieves 100% magnetic monopole dominance in the string tension and is
dual to the Ginzburg-Landau model, confirming the dual superconductor picture for confinement.

PACS numbers: 12.38.Aw, 21.65.Qr

It is well-known that the area law of the Wilson loop
average is a gauge-invariant criterion for quark confine-
ment. However, a gauge-invariant criterion for gluon con-
finement and color confinement is not yet achieved. In
recent several years, nevertheless, great endeavors have
been made to clarify the low-energy behavior of propa-
gators for gluon and the Faddeev-Popov (FP) ghost in
specific gauges, e.g., Landau, Coulomb and Maximally
Abelian (MA) gauges. Especially, in the Landau gauge,
it is still under debate to discriminate two different types
of propagators, i.e., scaling and decoupling. See e.g. [1].
According to [2, 3], however, both solutions satisfy quark
confinement criterion and positivity violation as a neces-
sary condition for gluon confinement. The quark confine-
ment [2] has been exhibited for non-zero temperature T
below the deconfinement temperature Tc (0 < T < Tc),
since vanishing Polyakov loop average was used as a
gauge-invariant criterion for quark confinement [4, 5].
In this Letter we derive a confining low-energy effec-

tive model of the Yang-Mills theory at zero temperature.
Then we discuss a relationship between quark confine-
ment and gluon confinement via the infrared behavior of
gluon propagator. We show that including a certain mass
term violating the nilpotent BRST symmetry yields the
gluon propagator of Gribov-Stingl type. However, such a
mass term is not indispensable to obtain quark and gluon
confinement, since the area law and positivity violation
can be obtained even in the absence of such a mass term.
This Letter is organized as follows.
(Step 1) [Reformulating the Yang-Mills theory in terms

of new variables] In a path-integral quantization for the
Yang-Mills theory, we decompose the Yang-Mills field
Aµ(x) into two pieces Vµ(x) and Xµ(x), i.e., Aµ(x) =
Vµ(x) + Xµ(x), and rewrite the action SYM[A ] and the
integration measure [dA ] in terms of new variables re-
lated to Vµ(x) and Xµ(x), according to [6–8] and [9–12].
(Step 2) [Deriving an effective model by eliminating

high-energy modes] We integrate out Xµ field as the
high-energy mode (p2 ≥ M2) with a certain mass scaleM
of the field Aµ. Therefore, the resulting model Seff

YM[V ]
is written in terms of Vµ(x), and is identified with a
low-energy effective model for describing the low-energy

regime p2 ≤ M2. A physical reasoning behind this step is
explained below. The full gauge invariance of the original
Yang-Mills theory SYM[A ] is retained also for Seff

YM[V ].
(Step 3) [Converting the Wilson loop to the surface-

integral] In the new formulation using new variables, we
can exactly rewrite the Wilson loop operator WC [A ]
originally defined in terms of Aµ(x) by using Vµ(x) alone
without any reference to Xµ(x), according to [13–15].
This fact suggests that Seff

YM[V ] is suitable as a low-energy
effective model for quark confinement.
(Step 4) [Choosing a gauge to simplify the calcula-

tion] The Wilson loop average 〈WC [A ]〉YM, i.e., vacuum
expectation value of the Wilson loop operator WC [A ]
is evaluated by using the effective model Seff

YM[V ] as
〈WC [A ]〉effYM. We show that the Wilson loop average has
the area law for sufficiently large loop C, leading to the
non-vanishing string tension σ in the linear part for the
static quark-antiquark potential V (R).
However, from the physical viewpoint of clarifying

what is the mechanism for confinement, we modify
(Step 1’, 2’) We introduce an antisymmetric tensor

field Bµν of rank 2 [16–18], which is interpreted as a com-
posite field of the Yang-Mills field. Then we repeat the
same procedures as before to obtain the effective model
Seff
YM[V , B] by integrating out X field. Although the

area law of the Wilson loop average is obtained also in
this model, this modification has the advantages:
(Step 5)[Gribov-Stingl form for the gluon propagator

consistent with gluon confinement] The effective gluon
propagator for V obtained from Seff

YM[V , B] by eliminat-
ing B field has the Gribov-Stingl form, which exhibits
positivity violation suggesting gluon confinement [21–23].
(bonus)[dual superconductivity as a mechanism of

quark confinement] The low-energy effective action
Seff
YM[V , B] is dual to the Ginzburg-Landau (GL) model

in the London limit. This confirms that the dual super-
conductivity due to magnetic monopole condensation is
indeed the mechanism for quark confinement. This as-
pect cannot be shown without introducing Bµν .
Thus the derived effective model exhibits both quark

confinement (area law) and gluon confinement (positivity
violation).
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In this Letter, we consider only the SU(2) gauge group
[9–11] and the extension to SU(N) based on [12] will be
given in a subsequent paper.
(Step 1) The new variable Vµ(x) as a Lie-algebra su(2)-

valued field Vµ(x) = V A
µ (x)TA (A = 1, 2, 3) is con-

structed so that (i) Vµ has the same gauge transformation
as the original field Aµ, i.e., Vµ(x) → Ω(x)Vµ(x)Ω(x)

† +
ig−1Ω(x)∂µΩ(x)

† and hence its field strength Fµν [V ] :=
∂µVν − ∂νVµ − ig[Vµ,Vν ] transforms as Fµν [V ](x) →
Ω(x)Fµν [V ]Ω(x)†, and (ii) Fµν [V ] is proportional to n,
i.e., Fµν [V ](x) := n(x)Gµν (x). Consequently, Gµν =
n · Fµν [V ] is gauge-invariant, since the field n is con-
structed so that it transforms as n(x) → Ω(x)n(x)Ω(x)†.
The explicit transformation rule from the original vari-
ables Aµ to the new variables Vµ, Xµ are given by

Vµ(x) = cµ(x)n(x) + ig−1[n(x), ∂µn(x)],

cµ(x) := Aµ(x) · n(x),
Xµ(x) = ig−1[Dµ[A ]n(x),n(x)], (1)

Here n(x) is the Lie-algebra su(2)-valued field n(x) =
nA(x)TA (A = 1, 2, 3) with a unit length, i.e.,
nA(x)nA(x) = 1. The so-called color field n must be
obtained in advance as a functional of the original vari-
able Aµ, e.g., by solving the reduction condition [9]
[n(x), Dµ[A ]Dµ[A ]n(x)] = 0. Gµν has the same form
as the ’t Hooft-Polyakov tensor for magnetic monopole:

Gµν = ∂µcν − ∂νcµ + ig−1
n · [∂µn, ∂νn]. (2)

(Step 1’) We can introduce a gauge-invariant antisym-
metric tensor field (∗B)µν of rank 2 by inserting a unity
into the path-integral [16–18]:

1 =

∫

DB exp
[

−
∫

d4x
γ

4
{(∗B)µν

− (αn · Fµν [V ]− βn · ig[Xµ,Xν ])}2
]

, (3)

where ∗ is the Hodge dual operation. Here (too many)
parameters γ, α, β are introduced to see effects of each
term. When β = γ−1 = G̃ and α = 0, indeed, (∗B)µν
is regarded as a collective field for the composite oper-
ator n · ig[Xµ,Xν ] with the propagator G̃ obtainable
in a self-consistent way [19] according to the Wilsonian
renormalization group (RG) [20]. Then the Euclidean
Yang-Mills Lagrangian is rewritten and modified into

LYM[V ,X , B]

=
1 + γα2

4
G2

µν +
γ

4
(∗B)2µν − γα

2
(∗B)µνGµν

+
1

2
X

µAQAB
µν X

νB +
1 + γβ2

4
(ig[Xµ,Xν ])

2, (4)

where we have defined

QAB
µν :=SABδµν + (2 + γαβ)gǫABCnCGµν

− γβgǫABCnC(∗B)µν ,

SAB :=− (Dρ[V ]Dρ[V ])AB , (5)

with the covariant derivative Dµ in the adjoint represen-
tation with Vµ := V C

µ TC , (TC)
AB = ifACB: DAB

µ :=

∂µδ
AB − gfABCV C

µ = [∂µ1− igVµ]
AB.

[On the effect and the role of the gluon mass term] The
gluon “mass term” for the X field,

1

2
M2

X
2
µ , (6)

is gauge invariant in the new formulation [11]. Therefore,
we can include this mass term in calculating the low-
energy effective action. But we do not introduce this
mass term explicitly. On the other hand, the inclusion of
the gluon mass term for the V field,

1

2
m2

V
2
µ =

1

2
m2c2µ +

1

2
m2(∂µn)

2, (7)

breaks gauge invariance and BRST invariance after tak-
ing specific gauges. However, we can modify the BRST
such that the modified BRST is a symmetry of the Yang-
Mills theory with the mass term at the cost of nilpotency.
(Step2’) We identify Xµ with the “high-energy” mode

in the range p2 ∈ [M2,Λ2], integrate out the “high-
energy” modes Xµ by taking into account the FP-like
determinant [10] term associated with the reduction con-
dition [9], but we neglect quartic self-interactions among
Xµ, i.e., (ig[Xµ,Xν ])

2. Here Λ is the ultraviolet (UV)
cutoff as the initial value for the Wilsonian RG and M
is the infrared (IR) cutoff. The calculation is not ex-
actly the one-loop level after introducing Bµν . In these
approximations we obtain a gauge-invariant low-energy
effective action Seff

YM[V , B] without mass terms (6),(7):

Seff
YM[V , B]

=

∫

[1 + γα2

4
G2

ρσ +
γ

4
(∗B)2ρσ − γα

2
(∗B)ρσGρσ

]

+
1

2
ln detQAB

ρσ − ln detSAB, (8)

with the functional logarithmic determinant

1

2
ln detQAB

ρσ − ln detSAB

=

∫

g2 ln µ2

M2

(4π)2

[

1

6
G2

ρσ − 1

2
{(2 + γαβ)Gρσ − γβ(∗B)ρσ}2

]

+

∫

g2

(4π)2
1

M2

1

6
(DAB

λ [{(2 + γαβ)Gρσ − γβ(∗B)ρσ}nB])2

+O(∂4/M4), (9)

where
∫

=
∫

d4x. This is one of main results. The gauge
fixing is unnecessary in this calculation. Indeed, the re-
sulting effective action (8) with (9) is manifestly gauge
invariant. The correct RG β-function at the one-loop

level β(g) := µdg(µ)
dµ = −b1g

3 + O(g5), b1 = 22
3 /(4π)2 is

reproduced in a gauge invariant way when γαβ = 0 which
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follows from e.g. α = 0 (mentioned above) or γ = 0 (in
the case of no Bµν field). To obtain (9), we used the heat
kernel to calculate the regularized logarithmic determi-
nant. Instead of using the standard regulator function
RM of the functional RG approach [20], we restrict the
integration range of τ to τ ∈ [1/Λ2, 1/M2], which corre-
sponds to the momentum-shell integration p2 ∈ [M2,Λ2]

ln detO =−
∫

dDx lim
s→0

d

ds

[ µ2s

Γ(s)

∫ 1/M2

1/Λ2

dττs−1

× tr
〈

x|e−τO|x
〉

]

, (10)

where tr denotes the trace over Lorentz indices and group
indices and µ is the renormalization scale. The limit
Λ → ∞ should be understood in what follows. These
results extend previous works [16, 17, 24, 25].
(Step 3) We use a non-Abelian Stokes theorem [13–15]

to rewrite a non-Abelian Wilson loop operator

WC [A ] :=tr

[

P exp

{

ig

∮

C

dxµ
Aµ(x)

}]

, (11)

into the area-integral over the surface Σ (∂Σ = C):

WC [A ] =

∫

dµΣ(ξ) exp

[

ig

∫

Σ:∂Σ=C

G

]

, (12)

where the product measure dµΣ(ξ) :=
∏

x∈Σ dµ(ξx) is
defined with an invariant measure dµ on SU(2) normal-
ized as

∫

dµ(ξx) = 1, ξx ∈ SU(2). In the two-form G :=
1
2Gµν(x)dx

µ ∧ dxν , Gµν agrees with the field strength
(2) under the identification of the color field n(x) with a
normalized traceless field n(x) := ξx(σ3/2)ξ

†
x.

(Step 4) We evaluate the Wilson loop averageW (C) =
〈WC [A ]〉YM by using the effective action Seff

YM[V , B], i.e.,
〈WC [A ]〉YM ≃ 〈WC [A ]〉effYM with the aid of (12).
To obtain the propagator or correlation functions, we

need to fix the gauge. In the Landau gauge, ∂µAµ = 0,
correlation functions for new variables are studied in the
numerical way in [28] based on [26, 27]. This justifies the
identification of Xµ as the high-energy mode negligible
in the low-energy regime below M ≃ 1.2GeV.
In what follows, we take the unitary-like gauge

nA(x) = δA3, (13)

which reproduces the same effect as taking the MA gauge
[29] in the original theory. In this gauge, X A

µ (x) reduces
to the off-diagonal component Aa

µ(x) (a = 1, 2), while

V A
µ (x) reduces to the diagonal one A3

µ(x) = aµ(x), i.e.,

X A
µ (x) = A a

µ (x)δAa, V A
µ (x) = A 3

µ (x)δA3 = cµ(x)δA3.
The field strength reads

Gµν(x) → Fµν(x) := ∂µcν(x)−∂νcµ(x), F = dc. (14)

The gauge (13) forces the color field to point to the
same direction by gauge rotations. Hence the field c

contains singularities (of hedge-hog type) similar to the
Dirac magnetic monopole after taking the gauge (13).
Therefore, dF = ddc 6= 0. If we do not take this
gauge, such a contribution is contained also in the part
ig−1

n · [∂µn, ∂νn] in a gauge-invariant combination Gµν ,
see [26, 27]. In this gauge, the effective action with an
optional mass term (7) reads up to quadratic in the fields

Seff
YM[c, B]

=

∫

[1 + γα2

4
F 2
ρσ +

γ

4
(∗B)2ρσ − γα

2
(∗B)ρσFρσ

]

+

∫

g2 ln µ2

M2

(4π)2

[

1

6
F 2
ρσ − 1

2
[(2 + γαβ)Fρσ − γβ(∗B)ρσ ]

2

]

+

∫

g2

(4π)2
1

M2

1

6
(∂λ[(2 + γαβ)Fρσ − γβ(∗B)ρσ])

2

+

∫

1

2
m2c2µ +O(∂4/M4). (15)

We can show that the mass term (6) plays the same role
as the IR regulator mentioned above, see [18].
The simplest way to demonstrate the area law is to use

the low-energy effective action Seff
YM[c, B] retained up to

terms quadratic and bilinear in c and B and the Wilson
loop operator reduced in the unitary-like gauge to

WC [F ] = exp

[

ig

∫

Σ:∂Σ=C

F

]

= exp [ig(ΘΣ, F )] , (16)

where ΘΣ is the vorticity tensor defined by Θµν
Σ (x) =

∫

Σ d2Sµν(x(σ))δD(x − x(σ)),which has the support on
the surface Σ whose boundary is the loop C. Here
(·, ·) is the L2 inner product for two forms: (ΘΣ, F ) =
∫

dDx1
2Θ

µν
Σ (x)Fµν (x) =

∫

Σ:∂Σ=C F . By integrating out

B, we obtain the effective model Seff
YM[c] = 1

2

(

c,D−1
cc c

)

=
1
2

(

F,D−1
FFF

)

in terms of c or F . Then the Wilson loop
average W (C) is evaluated by integrating out F = dc:

W (C) = exp

[

−1

2
g2(ΘΣ,DFFΘΣ)

]

, (17)

where DFF = ∆Dcc and its Fourier transform D̃FF(p) =
p2D̃cc(p). For concreteness, we choose ΘΣ for a pla-
nar surface bounded by a rectangular loop C with side
lengths T and R in the x3 − x4 plane. Then the Wilson
loop average has the area law W (C) ∼ exp[−σRT ] for
large R with the string tension given by the formula:

σ = g2
∫

p2:=p2

1
+p2

2
≤M2

dp1dp2
(2π)2

D̃FF(p1, p2, 0, 0) > 0, (18)

where the momentum integration is cutoff at the upper
limit M . A positive and finite string tension 0 < σ < ∞
follows from the condition of no real poles in the effective
gluon propagator D̃cc(p) in the Euclidean region, 0 <
D̃FF(p) = p2D̃cc(p) < ∞, which is connected to gluon
confinement below. This is another of main results.
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The effective propagator Dcc has the Gribov-Stingl
form (up to an overall normalization C > 0):

D̃FF(p) = p2D̃cc(p), D̃cc(p) = C
1 + d1p

2

c0 + c1p2 + c2p4
, (19)

where c0 = m2, c1 = 1+ γβ2

3
g2

(4π)2
m2

M2 , c2 = g2

(4π)2
1

M2 [(2 +

γαβ)2 + (1 + γα2)γβ2 + 2(2 + γαβ)γαβ]/3, and d1 =
γβ2

3
g2

(4π)2
1

M2 . The precise values of the parameters

m, γ, α, β and M are to be determined by the functional
RG [20] following [5], which is a subject of a subsequent
paper. According to numerical simulations in MA gauge
[31–33], the diagonal gluon propagator is well fitted to
the form (19): e.g. [33] give c0 = 0.064(2)GeV2, c1 =
0.125(9), c2 = 0.197(9)GeV−2, and d1 = 0.13(1)GeV−2.
This indeed leads to a good estimate for the string ten-
sion σ ≃ (0.4GeV)2 according to (18) for M ≃ 1.2GeV
(C ≃ 1) and α(µ = M) = g2(µ = M)/(4π) ≃ 1.0.
The Gribov-Stingl form is obtained only when c0 6=

0 (i.e., m 6= 0) and d1 6= 0 (Bµν is included). Even
in the limit m2 → 0 (c0 → 0), the area law survives
according to (18), provided that D̃FF(p) remains positive

and finite: D̃FF(p) → C 1+d1p
2

c1+c2p2 , while D̃cc(p) behaves

as D̃cc(p) → C 1+d1p
2

p2(c1+c2p2) . Hence, it does not matter to

quark confinement whether m = 0 or m 6= 0.
(Step5) The positivity violation is examined. In the

case of c2 6= 0, D̃cc(p) has a pair of complex conjugate
poles at p2 = z and p2 = z∗, z := x+ iy, x := −c1/(2c2),

y :=

√

c0/c2 − (c1/(2c2))
2 We find that the Schwinger

function ∆(t) :=
∫ +∞

−∞
dp4

2π eip4tD̃cc(p = 0, p4) is negative
over finite intervals in the Euclidean time t > 0:

∆(t) =
1

2c2|z|3/2 sin(2ϕ)
e−t|z|1/2 sinϕ[cos(t|z|1/2 cosϕ− ϕ)

+ d1|z| cos(t|z|1/2 cosϕ+ ϕ)], (20)

where z = |z|e2iϕ with |z| = (c0/c2)
1/2, cos(2ϕ) =

−
√

c21/(4c0c2), and sin(2ϕ) =
√

1− c21/(4c0c2). There-
fore, the reflection positivity is violated for the gluon

propagator (19), as long as 0 <
c2
1

4c0c2
< 1, irrespective of

d1. The special case c0 = 0 also violates the positivity:

∆(t) = − t

2
√
2πc1

+
c
1/2
2

2c
3/2
1

(

c1d1
c2

− 1

)

e
−t

√

c1
c2 . (21)

Thus the diagonal gluon can be confined. In the case of
c2 = 0, there is no positivity violation, as far as c0/c1 > 0.
(bonus) The area law originates from magnetic

monopoles. In our effective model, 100% monopole dom-
inance in the string tension is achieved. For m = 0, the
path-integral duality transformation of our model agrees
with the GL model in the London limit, and quark con-
finement is caused by the dual Meissner effect induced

by spontaneous breaking of the dual U(1) symmetry, as
demonstrated in [17, 18]. For m 6= 0, there appears a
deviation from the dual GL model. More details will be
given in a subsequent paper.
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